Ex vivo antisense oligonucleotides to proliferating cell nuclear antigen and Cdc2 kinase inhibit graft coronary artery disease.
نویسندگان
چکیده
BACKGROUND The long-term success of cardiac transplantation is limited by graft coronary artery disease (GCAD). Antisense oligonucleotides (ASs) to proliferating cell nuclear antigen (PCNA) and Cdc2 kinase (Cdc2 k) can arrest cell cycle progression and inhibit neointimal hyperplasia. Transforming growth factor-ss(1) (TGF-ss(1)) has been implicated in vascular smooth muscle cell (VSMC) activation. The role of TGF-ss(1) in GCAD remains unclear. We hypothesized that ASs to PCNA and Cdc2 k would inhibit VSMC proliferation and GCAD. METHODS AND RESULTS In vitro VSMC proliferation was determined after pretreatment with AS solution or medium alone followed by angiotensin II stimulation. PVG-to-ACI rat heterotopic cardiac transplantation procedures were performed after ex vivo pressure-mediated transfection of ASs to PCNA and Cdc2k or saline alone. At postoperative days 30, 60, and 90, allografts were assessed for GCAD, percent neointimal macrophages and VSMCs, and TGF-ss(1) activity. AS pretreatment significantly attenuated VSMC proliferation. At postoperative day 90, percent affected arteries, percent occlusion, and intima-media ratio demonstrated severe GCAD in saline-treated allografts, whereas these parameters were significantly lower in AS-treated allografts. Percent neointimal macrophages and VSMCs was reduced in AS-treated allografts. TGF-ss(1) activity was increased in saline compared with AS-treated allografts and nontransplanted heart controls. CONCLUSIONS ASs to PCNA and Cdc2 k inhibit VSMC proliferation in vitro and reduce GCAD, percent neointimal VSMCs and macrophages, and TGF-ss(1) activity in vivo. TGF-ss(1) may play a "response to injury" role in the development of GCAD. The prevention of GCAD via AS inhibition of cell cycle regulatory genes before reperfusion may offer a useful clinical alternative to current therapeutic strategies.
منابع مشابه
Endothelial Preservation in Genetically Engineered Vein Grafts
We have recently shown that ex vivo gene therapy of rabbit autologous vein grafts with antisense oligodeoxynucleotides (AS ODN) blocking cell cycle regulatory gene expression inhibits not only neointimal hyperplasia, but also diet-induced, accelerated graft atherosclerosis. We observed that these grafts remained free of macrophage invasion and foam cell deposition. Since endothelial dysfunction...
متن کاملAntisense Proliferating Cell Nuclear Antigen Oligonucleotides
We have used antisense phosphorothioate oligonucleotides to define the role played by proliferating cell nuclear antigen (PCNA) in neointimal accumulation of smooth muscle cells in a rat carotid artery injury model. The short-term extraluminal delivery of 250 nmol of antisense oligonucleotides, but not control oligonucleotides, immediately after arterial injury produces a 77% suppression of PCN...
متن کاملMigration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase.
In this study, we investigated the effects of migration inhibitory factor (rhMIF) on angiogenesis-related signaling cascades and apoptosis in human endothelial cells (ECs). We show that in vitro rhMIF induces migration and tube formation in Matrigel of human dermal microvascular endothelial cells (HMVECs), with potency comparable to that of basic fibroblast growth factor. In vivo, rhMIF induces...
متن کاملAntisense oligonucleotides targeted to the p53 gene modulate liver regeneration in vivo.
The rapidly proliferating cells of the regenerating liver after partial hepatectomy (PH) present a reproducible in vivo model to study the functional role of the tumor suppressor gene p53. The present study uses the rat 70% PH model along with systemic administration of three different structural types of antisense oligonucleotides (ODNs) designed to suppress p53 expression. We tested the hypot...
متن کاملCloning, up-regulation, and mitogenic role of porcine P2Y2 receptor in coronary artery smooth muscle cells.
Previous work has shown up-regulation of a UTP-sensitive P2Y receptor in porcine coronary smooth muscle cells (CSMC) of organ-cultured arteries. However, the molecular identity and functional role of this putative receptor remained undefined. Here we report the cloning of the cDNA for this receptor that encodes an open reading frame for a protein of 373 amino acids with the highest homology to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 102 19 Suppl 3 شماره
صفحات -
تاریخ انتشار 2000